1. Consider the Body Mass Index (BMI) in a population of 60 year old males in a nursing home. Suppose that the BMI follows a normal distribution with mean 29 and standard deviation 6.
(Example from http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Probability/BS704_Probability8.html)
(a) What is the probability that a randomly selected 60 year old male from this population would have a BMI of at least 45 ?
(b) If nutritionists would like to intervene with the top 10% of BMIs in this population, what BMI would be the cutoff?
(c) If those below the 15 th percentile are at risk of malnutrition, what would be the smallest BMI someone in this population could have and not be at risk?
(d) What is the probability that a randomly selected 60 year old male from this population would have a BMI of at least 55?
2. A study of the effects of pollution on sea urchins ("Effects of Chronic Nitrate Exposure on Gonad Growth in Green Sea Urchin Strongylocentrotus Droebachiensis", Aquaculture, Vol. 242, No. 1-4, pp. 357-363) found that the weights of adult green sea urchins are normally distributed with mean 52.0 g and standard deviation 17.2 g . Answer the following questions using this information.
(a) What is the probability that a random adult green sea urchin would have a weight of at least 40.0 g ?
(b) Suppose that adult green sea urchins under 35.0 g are considered to be very sensitive to pollution. What is the probability that a sea urchin would fall in this category?
(c) If a biologist were to suggest that the smallest 12.5% of adult green sea urchins by weight should be considered very sensitive, what cutoff should be used?
(d) If the biologist in the previous question is correct, explain briefly whether the current cutoff (35.0) needs to be changed, and how you know. (Base your answer on the work in the previous questions. No new calculation should be needed.)
